On Thue Equations of Splitting Type over Function Fields
نویسندگان
چکیده
منابع مشابه
On Thue equations of splitting type over function fields
In this paper we consider Thue equations of splitting type over the ring k[T ], i.e. they have the form X(X − p1Y ) · · · (X − pd−1Y )− Y d = ξ, with p1, . . . , pd−1 ∈ k[T ] and ξ ∈ k. In particular we show that such Thue equations have only trivial solutions provided the degree of pd−1 is large, with respect to the degree of the other parameters p1, . . . , pd−2.
متن کاملDiophantine Equations over Global Function Fields II: R-Integral Solutions of Thue Equations
متن کامل
On a Parametric Family of Thue Inequalities over Function Fields
is called a Thue equation, due to Thue [22] who proved, in the case R = Z, that such an equation has finitely many solutions. In the last decade, starting with the result of Thomas in [21], several families (at the moment up to degree 8; see [9] and the references mentioned therein) of Thue equations have been considered, where the coefficients of the form Fc(X,Y ) depend on an integral paramet...
متن کاملThue equations and CM-fields
We obtain a polynomial type upper bound for the size of the integral solutions of Thue equations F (X,Y ) = b defined over a totally real number field K, assuming that F (X, 1) has a root α such that K(α) is a CM-field. Furthermore, we give an algorithm for the computation of the integral solutions of such an equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2010
ISSN: 0035-7596
DOI: 10.1216/rmj-2010-40-2-723