On Thue Equations of Splitting Type over Function Fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Thue equations of splitting type over function fields

In this paper we consider Thue equations of splitting type over the ring k[T ], i.e. they have the form X(X − p1Y ) · · · (X − pd−1Y )− Y d = ξ, with p1, . . . , pd−1 ∈ k[T ] and ξ ∈ k. In particular we show that such Thue equations have only trivial solutions provided the degree of pd−1 is large, with respect to the degree of the other parameters p1, . . . , pd−2.

متن کامل

On a Parametric Family of Thue Inequalities over Function Fields

is called a Thue equation, due to Thue [22] who proved, in the case R = Z, that such an equation has finitely many solutions. In the last decade, starting with the result of Thomas in [21], several families (at the moment up to degree 8; see [9] and the references mentioned therein) of Thue equations have been considered, where the coefficients of the form Fc(X,Y ) depend on an integral paramet...

متن کامل

Thue equations and CM-fields

We obtain a polynomial type upper bound for the size of the integral solutions of Thue equations F (X,Y ) = b defined over a totally real number field K, assuming that F (X, 1) has a root α such that K(α) is a CM-field. Furthermore, we give an algorithm for the computation of the integral solutions of such an equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2010

ISSN: 0035-7596

DOI: 10.1216/rmj-2010-40-2-723